SUSTITUCION TRIGONOMETRICA

SUSTITUCIÓN TRIGONOMETRICA.

Las sustituciones que involucran funciones trigonométricas se pueden llevar a cabo en aquellas integrales cuyo integrando contiene una expresión de la forma:

$\displaystyle {\sqrt{a^{2} - b^{2}x^{2}},\;\sqrt{a^{2} + b^{2}x^{2}}, \sqrt{b^{2}x^{2} - a^{2}}}$ con $a > 0$ y $b>0$

La sustitución trigonométrica permite transformar una integral en otra que contiene funciones trigonométricas cuyo proceso de integración es más sencillo.

Estudiaremos cada uno de los casos como sigue:

a.
El integrando contiene una función de la forma $\displaystyle {\sqrt{a^{2} - b^{2}x^{2}}}$ con $a>0\; , \;b>0$

Se hace el cambio de variable escribiendo

$\displaystyle {x =\frac{a}{b}\;sen\;\theta,}$donde $\theta \varepsilon \left]\frac{-\Pi}{2}, \frac{\Pi}{2}\right[\; y \;x\;\varepsilon \left]\frac{-a}{b}, \frac{a}{b}\right[$

Si $\displaystyle {x =\frac{a}{b}\;sen\;\theta}$ entonces $dx = \frac{a}{b}\;cos\;\theta\;d\theta$

Además: 

$\displaystyle {=\sqrt{a^{2}(1-sen^{2}\theta)} = \sqrt{a^{2}\;cos^{2}\theta} = \vert a\;cos\;\theta\vert = a\;cos\;\theta,}$ pues $a > 0$ y como

$\displaystyle {\theta \varepsilon \left]\frac{-\Pi}{2}, \frac{\Pi}{2}\right[}$ entonces $cos\;\theta>0$ por lo que $\vert a\;cos\;\theta\vert = a\;cos\;\theta$

Luego: $\displaystyle {\sqrt{a^{2} - b^{2}x^{2}} = a\;cos\;\theta}$

Como $\displaystyle {x =\frac{a}{b}\;sen\;\theta}$ entonces $sen\;\theta = \frac{bx}{a} \; y\; \theta = arcsen\left(\frac{bx}{a}\right)$

Para este caso, las otras funciones trigonométricas pueden obtenerse a partir de la figura siguiente:

Ejemplos:

 

1.$\displaystyle {\int \sqrt{16 - x^{2}}\;dx\; x \varepsilon ]-4,4[}$

Sea $\displaystyle {x = 4\;sen\;\theta}$ con $\displaystyle {\theta\; \varepsilon \left]\frac{-\Pi}{2}, \frac{\Pi}{2}\right[}$

$\displaystyle {dx = 4\;cos\;\theta\; d \theta}$

Luego: $\displaystyle {16-x^{2} = 16-16\;sen^{2}\theta = 16\;(1-sen^{2}\theta) = 16\;cos^{2}\theta}$

$\displaystyle {\sqrt{16-x^{2}} = 4\;cos\;\theta}$

Sustituyendo:

$\displaystyle {\int \sqrt{16-x^{2}}\;dx = \int 4\;cos\;\theta \cdot 4\;cos\;\theta\;d\theta = 16\int cos^{2}\theta\;d\theta}$

$\displaystyle {= 16\int \frac{1+cos\;2\theta}{2}\;d\theta = 8\int (1+cos\;2\theta)\;d\theta}$

$\displaystyle {= 8\;(\theta + \frac{1}{2}\;sen\;\theta) + C}$

$\displaystyle {= 8\theta + 4\cdot 2\;sen\;\theta\;cos\;\theta + C}$

$\displaystyle {= 8\theta + 8\;sen\;\theta\;cos\;\theta + C}$

Como $\displaystyle {x = 4\;sen\;\theta}$ entonces $\displaystyle {sen\;\theta = \frac{x}{4}}$ y $\displaystyle {\theta = arcsen\left(\frac{x}{4}\right)}$

Además $\displaystyle {\sqrt{16-x^{2}} = 4\;cos\;\theta}$ por lo que $\displaystyle {cos\;\theta = \frac{\sqrt{16-x^{2}}}{4}}$

Estos resultados también pueden obtenerse a partir de la figura siguiente:

Por último:

$\displaystyle {\int \sqrt{16-x^{2}}\;dx = 8\;\theta + 8\;sen\;\theta\;cos\;\theta + C}$

$\displaystyle {=8\;arcsen\left(\frac{x}{4}\right) + 8\cdot \frac{x}{4}\cdot \frac{\sqrt{16-x^{2}}}{4} + C}$

$\displaystyle {\int \sqrt{16-x^{2}}\;dx = 8\;arcsen\left(\frac{x}{4}\right) + \frac{x\sqrt{16-x^{2}}}{2} + C}$