METODO DE CUADRATURAS DE GAUSS.
La cuadratura de Gauss aproxima el integral de una función en un intervalo [a,b] centrado en cero mediante un cálculo numérico con menos operaciones y evaluaciones de la función. Se representa como una suma ponderada:
para la fórmula de dos puntos se tiene obtiene:
para un intervalo de evaluación desplazado en el eje x se requiere convertir los puntos al nuevo rango. Se desplaza el punto cero al centro del intervalo [a,b] y se obtiene:
con lo que el resultado aproximado del integral se convierte en:
cuya fórmula es semejante a una mejor aproximación de un trapecio, cuyos promedios de alturas son puntos internos de [a,b], concepto mostrado en la gráfica.